

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Foreword

D. J. Lee^a; X. Huang^b

^a National Taiwan University, ^b Tsinghua University,

Online publication date: 23 April 2010

To cite this Article Lee, D. J. and Huang, X.(2010) 'Foreword', *Separation Science and Technology*, 45: 7, 849

To link to this Article: DOI: 10.1080/01496391003673656

URL: <http://dx.doi.org/10.1080/01496391003673656>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Foreword

Membrane fouling generally refers to a pore plugging and external pore blocking, resulting from the deposition of particles and colloids on the membrane surface and the precipitation of smaller dissolved materials in the membrane pores. Membrane fouling declines the permeate flux and increases the trans-membrane pressure drop, thereby limiting the development of membrane processes for water and wastewater treatments. Physical, chemical, and biological schemes are utilized to prevent fouling or regenerate fouled membranes. This theme issue, as a continuation of the issue published in volume 41, issue 7 of *Separation Science & Technology*, reviewed the state-of-the-art research regarding the possible contribution of microbial products to fouling. In particular, this theme issue comprises selected peer-reviewed papers from the 5th IWA

specialized membrane technology conference for water and wastewater treatment held during September 1–3, 2009, Beijing and those from invited experts of reknown.

As guest editors of this issue, we are indebted to all the authors for their kind contributions to cover a sufficiently wide range of topics that are of interest to membrane researchers and practicers. Also, we are grateful to Steven M. Cramer, the Editor, for providing the valuable journal volume (again) to highlight the achievements of membrane professionals. And, we hope that you will find this issue informative and valuable for your research work.

D. J. Lee (National Taiwan University)
X. Huang (Tsinghua University)
The Guest Editors